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Abstract

We present in this paper a method that uses densely dis-
tributed streamlines to achieve real-time 2D flow visualiza-
tion with better visual quality than produced by texture-
based methods. We call the method a line-based flow vi-
sualization (LBFV) method because it uses a dense set of
line segments as basic rendering primitives. Streamlines
are commonly used for flow visualization, and they pro-
vide more effective visualization of global features of flow
data than texture-based methods, due to its integral defini-
tion. However, existing streamline-based methods use rel-
atively sparsely distributed streamlines and thus produce
lower resolution than texture-based methods. In our method
densely distributed streamlines are computed using parti-
cle advection, with initial particle positions determinedby
a novel algorithm, and we use hardware-assisted image
blending to render the streamlines efficiently for real-time
visualization. Specifically, line segments representing par-
ticle advection in the current frame are blended with the im-
age of the previous frame to achieve fast rendering (40-100
fps) as well as the natural decaying effect of the wakes of
streamlines. Several intuitive parameters, such as the line
width, line color, the total number of particles, and the time
step for particle advection, can easily be tuned for produc-
ing various visual results. Experimental examples are pre-
sented to demonstrate the effectiveness of our method and
to compare it with the conventional LIC (Line Integral Con-
volution) method and the IBFV (image-based flow visual-
ization) method.

Keywords: flow visualization, particle advection, stream-
lines, image blending.

1. Introduction

Vector fields are frequently encountered in many scien-
tific and engineering disciplines. Faithful and visual rep-
resentation of vector fields is necessary for accurate and
intuitive understanding of the features of vector fields. A
challenging problem in vector field visualization is the vi-
sualization of flow data, which are typically generated by
computational fluid dynamics (CFD) simulations.

Existing streamline-based methods for 2D flow visual-
ization normally use streamlines that are relatively sparsely

distributed and carefully placed. We present a novel
method for 2D flow visualization that uses densely dis-
tributed streamlines generated by a large number of ran-
domly seeded particles; 2000 particles are typically needed
for an image of512×512 pixels. The motion of the particles
along field lines is displayed bystreamlets(i.e. streamline
elements), composed of a sequence of connected short line
segments. To convey the smooth motion of the particles and
their wakes, the displayed image at each frame is generated
by α-compositing the rendering of all streamlets at the cur-
rent frame with the image displayed at the previous frame.

Our method is very efficient; it achieves as high as 100
fps on a commodity PC, thus suits well for real time visu-
alization of flow data. A distinct advantage of the method,
owing to its use of streamlets, is that the streamlines of vary-
ing lengths can be perceived clearly, thus serving as an ef-
fective visual cue for flow velocity.

We call our method line-based flow visualization
(LBFV) because line segments are used as basic rendering
primitives. Figure 1 compares the snapshots of the visual-
ization results of the same flow field generated by the con-
ventional IBFV (image-based flow visualization) method
in [18] and our LBFV method, respectively.

The remainder of this paper is organized as follows. In
Section 2 we discuss some related work. Section 3 describes
in detail our LBFV method for real time flow visualization.
The experimental results are presented and compared with
the LIC method and IBFV method in Section 4. We con-
clude the paper in Section 5 with discussions for future re-
search.

(a) (b)

Figure 1. Flow visualization results produced
by IBFV (a) and LBFV (b).



2. Related work

Many methods have been reported in the literature for
flow visualization, but we can only review those most rele-
vant results. The reader may consult [12] for a comprehen-
sive overview of flow visualization techniques.

2D vector fields can be represented by hedgehogs, i.e. ar-
row plots [11]. This approach, however, is not amenable to
easy reconstruction of the flow when the arrows are placed
on a regular grid. Streamlines and advected particles are
also used to indicate relatively sparsely distributed integra-
tion paths, but the start-points of streamlines and particles
have to be determined with special care to ensure that im-
portant features of flow fields are not missed [18]. Turk and
Banks [15] propose an image-guided method to iteratively
optimize the placement of streamlines. This method pro-
duces good visualization quality but with rather slow con-
vergence. Jobard and Lefer [7] give an efficient method
for creating evenly-spaced streamlines of arbitrary density,
but the method is not fast enough for real-time animation.
Stalling et al. [14] present a technique for interactive 3D
vector field visualization using a large number of properly
illuminated field lines. Note that none of these streamline-
based methods mentioned above accommodate high spatial
resolution of visualization.

Using spot textures, van Wijk [17] proposes the first
method for visualizing a flow field with high spatial res-
olution; a spot texture is generated for data visualization
by inserting distorted spots with random intensity at ran-
dom locations in the field. This method has inspired sev-
eral other texture-based or image-based methods. Cabral
and Leedom [3] present a powerful Line Integral Convolu-
tion (LIC) method. In the LIC method, a random texture is
locally convolved along field lines to yield the final image
that depicts the flow structure. The LIC method as orig-
inally proposed is rather slow; it takes tens of seconds to
compute an image because a large number of points on a
streamline (typically 20-50) need to be computed for con-
volution for each pixel. The fast line integral convolution
(FLIC) method is devised by Stalling and Hege in [13]. It
employs a simple box filter kernel and minimizes the total
number of stream lines to be computed. FLIC reduces com-
putational time by one order of magnitude as compared to
the original LIC.

While all the above methods provide only a static visual-
ization of the flow data, much effort has recently been made
to develop more efficient techniques for animating the mo-
tion of flow data at an interactive rate. Heidrich et al. [6]
make the first attempt by accelerating the LIC method with
graphics hardware, and achieve 3-4 fps on an SGI Octane
workstation. Jobard et al. [8] propose a technique for visu-
alizing unsteady flow fields based on a Lagrangian-Eulerian
Advection (LEA) scheme. The algorithm is implemented
in a parallel fashion on a 4-processor SGI Onyx2 worksta-
tion, and reaches about 4-5 fps. Weiskopf et al. [16] present
hardware-accelerated texture advection techniques and use
programmable per-pixel operations of an nVIDIA GeForce
3 graphics card to achieve 40 fps for flow motion visualiza-

tion.
Finally, van Wijk [18] presents an efficient method based

on image morphing for the visualization of 2D fluid flow.
Due to its comprehensive use of texture and image morph-
ing, this method is referred to as Image-Based Flow Visu-
alization (IBFV). The IBFV method uses the advection and
decay of dyes. Each frame of a flow animation is computed
as a blend between a warped version of the preceding image
and a number of background images. High performance of
about 50 fps is achieved using standard graphics hardware,
but special care must be taken in choosing the background
images to reduce artifacts.

3. Line-Based Flow Visualization

The streamline-based approach offers fine representation
of flow field lines but, in the way it is currently used, lacks
adequate spatial resolution. On the other hand, the texture-
based or image-based approach enjoys high spatial reso-
lution and superior rendering efficiency, but exhibits con-
spicuous noisy appearance and does not depict field lines
clearly. The basic idea of our method is simple: a high-
resolution visualization of a flow field with motion anima-
tion can be obtained by a large number of moving advected
particles displayed by streamlets. The displayed image can
be composed using hardware assisted image blending tech-
niques for maximum efficiency. Specifically, the wakes of
moving particles can be produced naturally by blending the
current particle traces, represented by streamlets, with the
image from the preceding frame. In this way high quality
images can be obtained by displaying at an interactive rate a
large number of densely distributed moving particles – typ-
ically 2000 particles are used for an image of512 × 512
pixels in our experiments.

In the rest of this section we discuss in detail the three
main components of our method: 1) representation and an-
imation of advected particles; 2) image blending; and 3)
seeding the initial positions of advected particles.

3.1. Particle advection

The particles are initially randomly seeded with a uni-
form distribution; the addition of new particles during the
animation is a bit more complicated and will be discussed
in Section 3.3. Letxi(t) denote the current position of the
ith particlepi at timet. Then its next positionxi(t + ∆t)
can be computed by solving the following equation:

dx

dt
= v(x). (1)

The following three integration methods are commonly
used for particle advection in flow visualization [12]: 1) the
standard Euler method; 2) the second-order Runge-Kutta
method; and 3) the fourth-order Runge-Kutta method. We
choose the second-order Runge-Kutta method as an accept-
able compromise between computational efficiency and ac-



curacy. The second-order Runge-Kutta method can be ex-
pressed as

{

x∗ = x(t) + ∆t · v(x(t))
x(t + ∆t) = x(t) + ∆t · [v(x(t)) + v(x∗)]/2.

(2)

To ensure high approximation accuracy,∆t should be
small enough to satisfy

∆t · max(|v(x)|) ≤ ∆x, (3)

where∆x is set to be the length of 10 pixel units in our
implementation. When this is satisfied, a line segment con-
necting the pointxi(t + ∆t) and the pointxi(t) for the
particlepi is used as the particle advection vector, or the
streamlet; otherwise, the streamlet fromxi(t) to xi(t+∆t)
will be considered too long, and therefore will be repre-
sented by a sequence of connected short line segments. This
treatment preserves the smoothness and accuracy of the path
lines even when the animation time step∆t is large.

3.2. Image blending

Image blending is used for flow visualization in several
existing methods [8] [10] [18]. These methods usually use
texture advection techniques and blend successive images
at successive frames for the smooth representation of flow
motion. In our LBFV method, image blending is done be-
tween an image containing a large number of streamlets and
the previous frame to produce the long wakes of streamlines
for the decaying effect of moving particles.

Suppose that a single particlepi starts at an initial po-
sition xi,0 and moves through a sequence of intermediate
positions, denoted by circles in Figure 2, to arrive at the
current positionxi,k at thekth time step; the case ofk = 10
is illustrated in Figure 2. The line segmentxi,9xi,10 is the
streamlet ofpi at the current frame, and the sequence of
streamlets fromxi,0 to xi,9 are captured in the image at the
previous frame. Then the blending of these two images pro-
duces the effect shown in the rightmost image of Figure 2.
Due to the repeated application ofα-blending, the path-line
of the advected particlepi becomes less conspicuous as it
goes back in time. The wake of the particlepi, i.e. the
clearly visible part of the path-line, can be controlled by
using differentα values inα-blending. (See Section 4.2.)
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Figure 2. Blending effect for a single particle.

The current frame of streamlets can be rendered quickly
into a texture using the OpenGL function glCopyTexIm-
age2D(). The blending operation can then be performed
efficiently in OpenGL using a standard graphics card.

3.3. Color of streamlines

The colors used for rendering the streamlets play a crit-
ical role in enhancing visualization quality. If the same
color is applied to every streamlet, as done in other exist-
ing streamline based methods, then all streamlines, which
are normally in close proximity of each other, will fill out
an image and make all streamlines indistinguishable, since
almost all pixels will end up having the same color.

We use the following color scheme for rendering
streamlines. We first specify two basic colors, denoted
color1 and color2. A particle is assigned a color that
is randomly selected fromcolor1 and color2, and this
color will then be used for the entire life of the par-
ticle. Figure 3 shows an example that applies this
color scheme to a steady flow. (See the video clip at
http://cgcad.thss.tsinghua.edu.cn/∼yhp/fig3.mpg). Figure 7
provides another example of an unsteady flow.

(a) (b) (c)

(d) (e) (f)

Figure 3. A sequence of images generated for
a steady flow (106.4 fps, 2000 particles used).
The flow field is indicated with arrow plots
in (a). The two basic colors used are black
and white, and the initial background color is
blue.

3.4. Seed point selection

Streamline placement is a main concern in all visualiza-
tion methods that use a sparsely distribution of streamlines,
since there is a need to maintain certain spacing between the
streamlines. Previous work on streamline placement can be
found in [7] [14] [15]. Our use of a dense set of moving
streamlines poses some requirements different from those
by existing streamline-based methods. We require to have
all pixels covered by streamlets in order to provide a visu-
alization of high spatial resolution. Meanwhile, each pixel
should not be covered by too many streamlets at the same
time. These requirements are met in our method by a novel
algorithm for seeding the initial locations of particles dy-
namically during visualization animation.



Our particle seeding algorithm is based on the following
observation. Without knowing the features of flow data, i.e.
sink and source, we start with a uniform distribution of all
seed points of particles. Then, for each frame during flow
animation, we check and record for each pixel the number
of times it is passed through by streamlets; this number is
called thevisit countof the pixel. At each frame, we deem
that pixels having small visit counts are not adequately cov-
ered. Therefore these pixels will receive particle seeds with
a higher probability than those pixels with high visit counts.
The aim of such a strategy is to eventually make all pixels
attain the same visit counts.

To speed up the calculation, we divide the whole
field/image into a number of cellsci of uniform size∆c ×
∆c, where∆c is set to4 pixels in our implementation. That
is, we deal with cells rather than pixels.

The main steps of our seeding algorithm are as follows:

1. The whole field is divided into uniform cells of size
∆c × ∆c. Usually, with∆c = 4, 128 × 128 cells are
generated for a512 × 512 image.

2. Letsi record the visit count of the cellci. Initialize all
si to be zero.

3. Generate the initial positions of particles with uniform
distribution over all cells.

4. For a new framet + ∆t, generate the streamlets for
all advected particles with a time step∆t. Record the
total numberD of particles that are disappearing at this
frame due to absorption into a sink or moving out of
image boundary. Increase the visit countsi of each cell
ci by di(t), the number of streamlets that intersectci

at the current frame. Then subtractdi(t − n∆t) from
si; therefore,si records only the number of visits by
streamlets to the cellci in the pastn frames. Note that
di(t − n∆t) when(t − n∆t) < 0. A typical value of
n used in our experiments is between8 and15.

5. Add D new particle seeds into the image. The cell
with the smallest visit count are more likely to receives
new particles. The detail of this prioritized allocation
is explained below. Repeat the steps 4 and 5 until the
end of visualization animation.

The following method, often referred to as theRussian
roulette method[4], is used to select the cell for a new
seed point. First choose one cellci0 from all cells ci,
i = 1, 2, . . . , nc (nc = 128 × 128). Considering that the
selection probabilityEi of a cellci should be low if its visit
countsi is high, the following probability is defined

Ei =
1/si

∑nc

i=1
(1/si)

, i = 1, 2, . . . , nc, . (4)

andE0 = 0. Then, for each particle to be seeded, we gen-
erate a uniformly distributed random variableξ ∈ [0, 1] and
make the following decision: ifξ ∈ [

∑i0−1

i=0
Ei,

∑i0
i=0

Ei),
thenci0 is selected (see Figure 4). This decision process can

Figure 4. Using Russian roulette to select the
cell.

be done quickly using a binary search [5], which has a time
complexity ofO(log nc).

The stochastic algorithm given above has proven effec-
tive. An example is given in Figure 5 to show the improve-
ment of the visualization result by using this method as
compared with a uniform distribution of the particle seeds.

(a) (b)

Figure 5. Visualization effect resulting from
the uniform distribution of particle seeds is
shown in (a). The improved visualization by
using our particle seeding algorithm in Sec-
tion 3.4 is shown in (b). The flow field used is
shown in Figure 8(a).

4. Implementation and Experimental Results

We implemented LBFV in Visual C++ 6.0 using the stan-
dard OpenGL library. All the experiments were run on a PC
with a Pentium 4 1.8GHz CPU and an ATI Mobility Radeon
7500 graphics card. All images have512 × 512 resolution,
for which128×128 cells are used for seeding the particles.

4.1. Performance

The LBFV method achieves a frame rate ranging be-
tween 40 fps and 100 fps, with the rate dependent on the
number of particles that are active in the field. Note that
2000 particles normally suffice to produce satisfactory visu-
alization. Table 1 lists the processing time and frame rates
with different numbers of particles used.

4.2. User control

Our algorithm can easily be controlled by adjusting sev-
eral intuitive parameters, such as line width, line color,
opacity or alpha values for blending, and so on. Figure 6



Table 1. Time performance of LBFV.
Num of particles Rendering time per frame fps

2, 000 9.4ms 106.4
4, 000 12.9ms 77.5
10,000 22.7ms 44.1

shows two visualizations where different line colors are
used.

(a) (b)

Figure 6. Flow visualization with different
color choices in LBFV. Two colors (white and
blue) are used in (a); Five different colors are
used in (b).

The opacity or alpha values can also be adjusted to pro-
duce different blending effects. The blending function is

Cn = αL · CL + (1 − αL) · CT , (5)

whereαL is the alpha value of the streamlets in the current
frame,CL andCT are the colors of current streamlets and
the previous frame, respectively, andCn is the final com-
puted color. The wake of a streamline becomes less con-
spicuous when a larger value ofαL is used.

4.3. Flow animation

Our method can animate flow visualizations naturally,
thanks to the particle advection and image blending method
used, as discussed in Section 3.1 and 3.2. Figure 3 shows a
sequence of animated images for a steady flow. For an un-
steady flow, we get path-lines instead of streamlines using
LBFV. Usually a larger value ofαL should be used in order
to reduce the influence of earlier path-line segments on the
current image. Hence, in this case more particles should be
used to maintain the high spatial resolution of visualization.
Typically 2500 particles are enough to produce satisfactory
visualization for an unsteady flow of the size512 × 512
pixel. A visualization of an unsteady flow is shown in Fig-
ure 7, with 2500 particles. (The flow data for Figure 7 is
from the supplemental source code provided by van Wijk
in [18].)

4.4. Comparison with LIC and IBFV

LIC and IBFV are both texture based methods, and they
both need one or more noise textures as input. LIC is a

(a) (b) (c)

(d) (e) (f)

Figure 7. A sequence of images from an ani-
mation of an unsteady flow generated by our
LBFV method (96.8 fps, 2500 particles used).
See also the accompanying video clip at
http://cgcad.thss.tsinghua.edu.cn/ ∼yhp/fig7.mpg.

pixel-based approach, where each pixel is computed indi-
vidually by sampling along a streamline and convolving
with a random noise texture [3]. High image quality can
be achieved by LIC because distinct streamlines can be per-
ceived clearly. LIC can also be accelerated by graphics
hardware to generate interactive animation at 3 to 4 fps on
an SGI Octane workstation) [6]. Unlike LIC, IBFV is a
texture-patch-based approach, where a number of distorted
and texture-mapped patches are used to warp the previous
image [18]. IBFV is more time efficient for flow animation
than LIC, but the image quality is not as good as LIC.

Our method, LBFV, does not need any noise textures in-
put. Instead we use randomly selected colors of particles
to distinguish different streamlines. The blending of suc-
cessive frames is similar to the process of convolving back-
ward along streamlines in LIC, but done more efficiently.
This blending strategy is also used in IBFV. The high spatial
resolution of LBFV comes from the use of a large number
of densely distributed streamlets, rather than the noise tex-
tures used in IBFV. Thus long and distinct streamlines can
be seen more clearly in LBFV than in IBFV. The superior
efficiency of LBFV comes from the fact that line segments,
even a large number of them, can be rendered quickly using
a standard graphics card. The LIC method yields better im-
age quality than LBFV (see Figure 8), but it is not as fast as
LBFV.

Figure 8 shows the visualization results generated by
the LIC method [3], the IBFV method [18] and our LBFV
method, respectively, for the same flow field shown in Fig-
ure 8(a). It can be seen that LBFV enjoys the favorable
properties of both LIC and IBFV, i.e. the fine structure and
visual quality of the streamline-based approach and the high
efficiency of image-based approach. (The frame rates of
IBFV and LBFV for generating the visualizations in Figure
8 are 49.3 fps and 106.4 fps, respectively.)



(a) (b)

(c) (d)

Figure 8. Different visualization results from
LIC (b), IBFV (c), and LBFV (d) for the same
flow field in (a).

5. Conclusions

We have presented a line-based fluid visualization
method for visualizing a 2D flow field. By using a set of
densely distributed moving streamlines, our method is ca-
pable of producing real-time visualization of a flow field
with clearly perceived field lines.

We have experimented with the application of our
method to 3D flow visualization. Since the image blend-
ing technique is not directly applicable in 3D case, we
use OpenGL’s accumulation buffer to blend the successive
frames with a fixed viewpoint, which is clearly a restric-
tive and inconvenient requirement for 3D flow visualization.
Moreover, further research is needed to enhance the moving
effects of 3D streamlets.
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